Discrete Exponent Function - DEF (1/14)

The Discrete Exponent Function (**DEF**) used in cryptography firstly was introduced in the cyclic multiplicative group $Z_p^* = \{1, 2, 3, ..., p-1\}$, with binary multiplication operation $* \mod p$, where *p* is prime number. Further the generalizations were made especially in *Elliptic Curve Groups* laying a foundation of *Elliptic Curve CryptoSystems* (ECCS) in general and in *Elliptic Curve Digital Signature Algorithm* (ECDSA) in particular.

Let g be a generator of Z_p^* then **DEF** is defined in the following way:

DEF_g(x) = g^x mod $p = a$;

DEF argument x is associated with the private key – PrK (or other secret parameters) and therefore we will label it in red and value a is associated with public key – $P uK$ (or other secret parameters) and therefore we will label it in green.

In order to ensure the security of cryptographic protocols, a large prime number *p* is chosen. This prime number has a length of 2048 bits, which means it is represented in decimal as being on the order of 2^{2048} , or approximately $p \sim 2^{2048}$.

In our modeling with Octave, we will use *p* of length having only 28 bits for convenience. We will deal also with a strong prime numbers.

T2. Fermat (little)Theorem. If *p* is prime, then [Sakalauskas, at al.]

$$
z^{p-1}=1 \mod p
$$

Discrete Exponent Function (2/14)

Definition. Binary operation *** mod** *p* in *Z^p* ***** is an arithmetic multiplication of two integers called operands and taking the result as a residue by dividing by *p*.

For example, let $p = 11$, then $\mathbb{Z}_p^* = \{1, 2, 3, ..., 10\}$, then 5 $*$ 8 **mod** 11 = 40 **mod** 11 = 7, where 7 $\in \mathbb{Z}_p^*$.

In our example the residue of 40 by dividing by 11 is equal to 7, i.e., $40 = 3 * 11 + 7$. Then 40 **mod** 11 = (33 + 7) **mod** 11 = (33 **mod** 11 + 7 **mod** 11) **mod** 11 = (0 + 7) **mod** 11 = 7. Notice that 33 **mod** 11 = 0 and 7 **mod** 11 = 7.

Definition: The integer *g* is a generator in *Z^p* ***** if powering it by integer exponent values *x* all obtained numbers that are computed **mod** p generates all elements in in Z_p^* .

So, it is needed to have at least *p*-1 exponents *x* to generate all *p*-1 elements of *Z^p* ***** . You will see that exactly *p*-1 exponents *x* is enough.

Discrete Exponent Function (3/14)

Let Γ be the set of generators in Z_p^* . How to find a generator in Z_p^* ?

In general, it is a hard problem, but using strong prime *p* and *Lagrange theorem in group theory* the generator in Z_p^* can be found by random search satisfying two following conditions if p is strongprime.

For all $g \in \Gamma$

$$
g^q \neq 1 \mod p
$$
; and $g^2 \neq 1 \mod p$.

Fermat little theorem: If *p* is prime then for all integers *i*:

$i^{p-1} = 1$ **mod** *p***.**

Corollaries: 1. The exponent *p*-1 is equivalent to the exponent 0, since $i^0 = i^{p-1} = 1 \text{ mod } p$.

2. Any exponent *e* can be reduced **mod** (*p*-1), i.e.

$$
i^e \bmod p = i^{e \bmod (p-1)} \bmod p.
$$

3. All non-equivalent exponents x are in the set $Z_{p-1} = \{0, 1, 2, ..., p-2\}; +, -$, *mod (p-1) and **/** mod(p-1) wth exception.

4. Sets Z_{p-1} and Z_p^* have the same number of elements.

Discrete Exponent Function (4/14)

In \mathbb{Z}_{p-1} addition +, multiplication $*$ and subtraction - operations are realized **mod** (*p*-1).

Subtraction operation (*h-d*) **mod** (*p*-1) is replaced by the following addition operation (*h* + $(-d)$) **mod** (*p*-1)).

Therefore, it is needed to find $-d \mod (p-1)$ such that $d + (-d) = 0 \mod (p-1)$, then assume that

$$
-d \mod (p-1) = (p-1-d).
$$

Indeed, according to the distributivity property of modular operation

$$
(d + (-d)) \bmod (p-1) = (d + (p-1-d) \bmod (p-1) = (p-1) \bmod (p-1) = 0.
$$

Then

$$
(h-d) \bmod (p-1) = (h + (p-1-d)) \bmod (p-1)
$$

Discrete Exponent Function (5/14)

Statement: If greatest common divider between p -1 and *i* is equal to 1, i.e., $gcd(p-1, i) = 1$, then there exists unique inverse element $i^{-1} \text{ mod } (p-1)$ such that $i * i^{-1} \text{ mod } (p-1) = 1$. This element can be found by *Extended Euclide algorithm* or using *Fermat little theorem*. We do not fall into details how to find *i* **-1 mod** (*p***-**1) since we will use the ready-made computer code instead in our modeling.

Division operation **/** mod $(p-1)$ of any element in \mathbb{Z}_{p-1} by some element *i* is replaced by multiplication $*$ operation with i^{-1} mod $(p-1)$ if $gcd(i, p-1) = 1$ according to the *Statement* above.

To compute u/i mod (p-1) it is replaced by the following relation $u * i^{-1}$ mod (p - 1) since

u / *i* mod (*p*-1) =
$$
u * i^{-1} \mod (p-1)
$$
.

Discrete Exponent Function (6/14)

Example 1: Let for given integers u , x and h in Z_{p-1} we compute exponent *s* of generator g by the expression

Then
$$
s = u + xh.
$$

$$
g^s \bmod p = g^{s \bmod{(p-1)}} \bmod p.
$$

111_004 DEF Page 2

Therefore, s can be computed **mod** $(p-1)$ in advance, to save a multiplication operations, i.e.

 $s = u + xh \mod (p-1).$

Example 2: Exponent *s* computation including subtraction by xr mod (p **-**1) and division by *i* in Z_{p-1} when $gcd(i, p-1) = 1.$ $s = (h - xr)i^{-1} \mod (p-1).$

Firstly $d = xr \mod (p-1)$ is computed: Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found. Thirdly i^{-1} **mod** (p **-**1) is found. And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.

Discrete Exponent Function (7/14)

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be proved.

Theorem. If *g* is a generator in *Z^p* ***** then **DEF** provides the following 1-to-1 mapping

DEF:
$$
Z_{p-1} \rightarrow Z_p^*
$$
.

Parameters p and g for **DEF** definition we name as Public Parameters and denote by $PP = (p, g)$.

Example: Strong prime $p = 11$, $p = 2 * 5 + 1$, then $q = 5$ and q is prime. Then $p-1 = 10$. $\mathbf{Z_{11}}^* = \{1, 2, 3, ..., 10\}$ $\mathbf{Z}_{10} = \{0, 1, 2, ..., 9\}$

Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named *Cayley table* including multiplication table, addition table etc.

Multiplication table of multiplicative group Z_{11} ^{*} is represented below.

Discrete Exponent Function (9/14)

The table of exponent values for $p = 11$ in Z_{11}^* computed **mod** 11 and is presented in table below. Notice that according to Fermat little theorem for all $z \in \mathbb{Z}_{11}^*$, $z^{p-1} = z^{10} = z^0 = 1 \mod 11$.

Discrete Exponent Function (10/14)

Notice that there are elements satisfying the following different relations, for example:

 $3^5 = 1 \text{ mod } 11 \text{ and } 3^2 \neq 1 \text{ mod } 11.$

The set of such elements forms a subgroup of prime order $q = 5$ if we add to these elements the *neutral group element* 1.

This subgroup has a great importance in cryptography we denote by

$$
G_5 = \{1, 3, 4, 5, 9\}.
$$

The multiplication table of *G***⁵** elements extracted from multiplication table of *Z***11*** is presented below.

Discrete Exponent Function (11/14)

Notice that since G_5 is a subgroup of Z_{11} ^{*} the multiplication operations in it are performed **mod** 11. The exponent table shows that all elements $\{3, 4, 5, 9\}$ are the generators in G_5 . Notice also that for all $\gamma \in \{3, 4, 5, 9\}$ their exponents 0 and 5 yields the same result, i.e.

$$
\gamma^0 = \gamma^5 = 1 \text{ mod } 11.
$$

This means that exponents of generators **γ** are computed **mod** 5.

This property makes the usage of modular groups of prime order *q* valuable in cryptography since they provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group Z_p^* defined by the prime (not necessarily strong prime) number *p* the subgroup of prime order G_q in Z_p^* is used.

In this case if *p* is strong prime, then generator γ in G_q can be found by random search satisfying the following conditions

$\gamma^q = 1 \mod p$ and $\gamma^2 \neq 1 \mod p$.

Analogously in this generalized case this means that exponents of generators **γ** are computed **mod** *q*. In our modeling we will use group Z_p^* instead of G_q for simplicity.

Discrete Exponent Function (12/14)

Let as above $p=11$ and is strong prime and generator we choose $q=7$ from the set $\Gamma = \{2, 6, 7, 8\}.$ Public Parameters are $PP=(11,7)$, Then $DEF_{\varrho}(x) = DEF_7(x)$ is defined in the following way:

$$
\text{DEF}_7(x) = 7^x \bmod 11 = a;
$$

DEF $_7(x)$ provides the following 1-to-1 mapping, displayed in the table below.

You can see that *a* values are repeating when $x = 10, 11, 12, 13, 14$, etc. since exponents are reduced **mod** 10 due to *Fermat little theorem*.

The illustration why 7^x mod *p* values are repeating when $x = 10, 11, 12, 13, 14$, etc. is presented in computations below:

10 mod $10 = 0$; $710 = 70 = 1$ mod $11 = 1$. 11 mod $10 = 1$; $711 = 71 = 7$ mod $11 = 7$. 12 mod $10 = 2$; $712 = 72 = 49$ mod $11 = 5$. 13 mod $10 = 3$; $713 = 73 = 343$ mod $11 = 2$. 14 mod $10 = 4$; $714 = 74 = 2401 \text{ mod } 11 = 3$. etc.

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of $DEF_7(x)$ we perform the following step-by-step computations.

It is seen that one value of \boldsymbol{x} is mapped to one value of \boldsymbol{a} .

Discrete Exponent Function (14/14)

But the most in interesting think is that **DEF** is behaving like a *pseudorandom function*.

It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of **DEF** we compare the graph of "regular" **sine** function with "pseudorandom" **DEF** using Octave software.

function with "pseudorandom" **DEF** using Octave software.

Then $s = u + xh$.

$$
g^s \bmod p = g^{s \bmod (p-1)} \bmod p.
$$

Therefore, *s* can be computed **mod** (*p*-1) in advance, to save a multiplication operations, i.e.

 $s = u + xh \mod (p-1).$

Example 2: Exponent *s* computation including subtraction by xr mod $(p-1)$ and division by *i* in Z_{p-1} when $gcd(i, p-1) = 1.$ $s = (h - xr)i^{-1} \mod (p-1).$

Firstly $d = xr \mod (p-1)$ is computed: Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found. Thirdly $\mathbf{i}^{-1} \text{ mod } (\mathbf{p} - 1)$ is found. And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.

 \gg r=int64(randi(p-1)) r = 212560238 \gg i=int64(randi(p-1)) i = 64538497 \gg xr=mod(x*r,p-1) xr = 98263592 >> mxr=mod(-xr,p-1) mxr = 144239090 >> xrpmr=mod(xr+mxr,p-1) x rpmr = 0 >> hpmxr=mod(h+mxr,p-1) hpmxr = 96109957 \gg i_m1=mulinv(i,p-1) i_m1 = 196196855 \gg gcd(i,i_m1) ans $= 1$ \gg mod(i*i_m1,p-1) $ans = 1$ >> s=mod(hpmxr*i_m1,p-1) s = 131208547

$$
s = (h - xr)i^{-1} \bmod (p-1).
$$

 g^5 mod $p = \ldots$

Firstly $d = xr \mod (p-1)$ is computed: Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found. Thirdly i^{-1} **mod** (p **-**1) is found. And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.