
Discrete Exponent Function - DEF (1/14)

The Discrete Exponent Function (DEF) used in cryptography firstly was introduced in the cyclic
multiplicative group Zp* = {1, 2, 3, …, p-1}, with binary multiplication operation * mod p, where p is prime
number. Further the generalizations were made especially in Elliptic Curve Groups laying a foundation of
Elliptic Curve CryptoSystems (ECCS) in general and in Elliptic Curve Digital Signature Algorithm
(ECDSA) in particular.

Let g be a generator of Zp
* then DEF is defined in the following way:

DEFg(x) = gx mod p = a;

DEF argument x is associated with the private key – PrK (or other secret parameters) and therefore we will
label it in red and value a is associated with public key – PuK (or other secret parameters) and therefore we
will label it in green.

In order to ensure the security of cryptographic protocols, a large prime number p is chosen. This prime
number has a length of 2048 bits, which means it is represented in decimal as being on the order of 22048, or
approximately p ~ 22048.

In our modeling with Octave, we will use p of length having only 28 bits for convenience. We will deal also
with a strong prime numbers.

Discrete Exponent Function (2/14)

Definition. Binary operation * mod p in Zp
* is an arithmetic multiplication of two integers called operands

and taking the result as a residue by dividing by p.

For example, let p = 11, then Zp
* = {1, 2, 3, …, 10}, then 5 * 8 mod 11 = 40 mod 11 = 7, where 7  Zp

*.

In our example the residue of 40 by dividing by 11 is equal to 7, i.e., 40 = 3 * 11 + 7.
Then 40 mod 11 = (33 + 7) mod 11 = (33 mod 11 + 7 mod 11) mod 11 = (0 + 7) mod 11 = 7.
Notice that 33 mod 11 = 0 and 7 mod 11 = 7.

Definition: The integer g is a generator in Zp
* if powering it by integer exponent values x all obtained

numbers that are computed mod p generates all elements in in Zp
*.

So, it is needed to have at least p-1 exponents x to generate all p-1 elements of Zp
*. You will see that exactly

p-1 exponents x is enough.

Discrete Exponent Function (3/14)

Let  be the set of generators in Zp
*. How to find a generator in Zp

*?

111_004 DEF

T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas, at al.]

 z p-1 = 1 mod p

 111_004 DEF Page 1

Corollaries: 1. The exponent p-1 is equivalent to the exponent 0, since i0 = ip-1 = 1 mod p.

2. Any exponent e can be reduced mod (p-1), i.e.

3. All non-equivalent exponents x are in the set Zp-1 = {0, 1, 2, …, p-2}; +,-, *mod (p-1)
and / mod(p-1) wth exception.
4. Sets Zp-1 and Zp

* have the same number of elements.

In general, it is a hard problem, but using strong prime p and Lagrange theorem in group theory the generator
in Zp

* can be found by random search satisfying two following conditions if p is strongprime.

For all g

gq ≠ 1 mod p; and g2 ≠ 1 mod p.

Fermat little theorem: If p is prime then for all integers i:

i p-1 = 1 mod p.

ie mod p = ie mod (p-1) mod p.

Discrete Exponent Function (4/14)

Then

In Zp-1 addition +, multiplication  and subtraction - operations are realized mod (p-1).

Subtraction operation (h-d) mod (p-1) is replaced by the following addition operation (h + (-d)) mod (p-1)).

Therefore, it is needed to find -d mod (p-1) such that d + (-d) = 0 mod (p-1), then assume that

-d mod (p-1) = (p-1-d).

Indeed, according to the distributivity property of modular operation

(d + (-d)) mod (p-1) = (d + (p-1-d) mod (p-1) = (p-1) mod (p-1) = 0.

(h-d) mod (p-1) = (h + (p-1-d)) mod (p-1)

Discrete Exponent Function (5/14)

Statement: If greatest common divider between p-1 and i is equal to 1, i.e., gcd(p-1, i) = 1, then there exists

unique inverse element i-1 mod (p-1) such that i  i-1 mod (p-1) = 1. This element can be found by Extended
Euclide algorithm or using Fermat little theorem. We do not fall into details how to find i-1 mod (p-1) since
we will use the ready-made computer code instead in our modeling.

Division operation / mod (p-1) of any element in Zp-1 by some element i is replaced by multiplication 
operation with i-1 mod (p-1) if gcd(i, p-1) = 1 according to the Statement above.

To compute u/i mod (p-1) it is replaced by the following relation u  i-1 mod (p - 1) since

u /i mod (p-1) = u  i-1 mod (p-1).

Discrete Exponent Function (6/14)

Example 1: Let for given integers u, x and h in Zp-1 we compute exponent s of generator g by the expression

Then
s = u + xh.

gs mod p = gs mod (p-1) mod p.

 111_004 DEF Page 2

Therefore, s can be computed mod (p-1) in advance, to save a multiplication operations, i.e.

Example 2: Exponent s computation including subtraction by xr mod (p-1) and division by i in Zp-1 when
gcd(i, p-1) = 1.

Firstly d = xr mod (p-1) is computed:

Secondly -d = -xr mod (p-1) = (p-1-d) is found.

Thirdly i-1 mod (p-1) is found.

And finally exponent s = (h + (p-1-d))i-1 mod (p-1) is computed.

s = u + xh mod (p-1).

s = (h - xr)i-1 mod (p-1).

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be
proved.

Theorem. If g is a generator in Zp
* then DEF provides the following 1-to-1 mapping

DEF: Zp-1 → Zp
*.

Parameters p and g for DEF definition we name as Public Parameters and denote by PP = (p, g).

Example: Strong prime p = 11, p = 2  5 + 1, then q = 5 and q is prime. Then p-1 = 10.

Z11
* = {1, 2, 3, …, 10}

Z10 = {0, 1, 2, …, 9}

Discrete Exponent Function (7/14)

Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named
Cayley table including multiplication table, addition table etc.

Multiplication table of multiplicative group Z11
* is represented below.

1-1= 1 mod 11

2-1= 6 mod 11

3-1= 4 mod 11

4-1= 3 mod 11

5-1= 9 mod 11

6-1= 2 mod 11

7-1= 8 mod 11

8-1= 7 mod 11

9-1= 5 mod 11

10-1= 10 mod 11

Multiplicatio
n tab. mod 11

Z11
*

* 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 1 3 5 7 9

3 3 6 9 1 4 7 10 2 5 8

4 4 8 1 5 9 2 6 10 3 7

5 5 10 4 9 3 8 2 7 1 6

6 6 1 7 2 8 3 9 4 10 5

7 7 3 10 6 2 9 5 1 8 4

8 8 5 2 10 7 4 1 9 6 3

9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1

Values of inverse elements in Z11
*

Discrete Exponent Function (9/14)

The table of exponent values for p = 11 in Z11
* computed mod 11 and is presented in table below.

Notice that according to Fermat little theorem for all z Z11
*, z p-1 = z10 = z0 = 1 mod 11.

Exponent Z11
*

 111_004 DEF Page 3

Exponent
tab. mod
11

Z11
*

^ 0 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 4 8 5 10 9 7 3 6 1

3 1 3 9 5 4 1 3 9 5 4 1

4 1 4 5 9 3 1 4 5 9 3 1

5 1 5 3 4 9 1 5 3 4 9 1

6 1 6 3 7 9 10 5 8 4 2 1

7 1 7 5 2 3 10 4 6 9 8 1

8 1 8 9 6 4 10 3 2 5 7 1

9 1 9 4 3 5 1 9 4 3 5 1

10 1 10 1 10 1 10 1 10 1 10 1

22≠1 mod 11 & 25≠1 mod 11

62≠1 mod 11 & 65≠1 mod 11

72≠1 mod 11 & 75≠1 mod 11

82≠1 mod 11 & 85≠1 mod 11

Discrete Exponent Function (10/14)

Notice that there are elements satisfying the following different relations, for example:

35 = 1 mod 11 and 32 ≠ 1 mod 11.

The set of such elements forms a subgroup of prime order q = 5 if we add to these elements the neutral
group element 1.

This subgroup has a great importance in cryptography we denote by

G5 ={1, 3, 4, 5, 9}.

The multiplication table of G5 elements extracted from multiplication table of Z11
* is presented below.

Multiplication
tab. mod 11

G5

* 1 3 4 5 9

1 1 3 4 5 9

3 3 9 1 4 5

4 4 1 5 9 3

5 5 4 9 3 1

9 9 5 3 1 4

Values of inverse
elements in G5

1-1= 1 mod 11

3-1= 4 mod 11

4-1= 3 mod 11

5-1= 9 mod 11

9-1= 5 mod 11

Exponent
tab. mod 11

G5

^ 0 1 2 3 4 5

1 1 1 1 1 1 1

3 1 3 9 5 4 1

4 1 4 5 9 3 1

5 1 5 3 4 9 1

9 1 9 4 3 5 1

Discrete Exponent Function (11/14)

Notice that since G5 is a subgroup of Z11
* the multiplication operations in it are performed mod 11.

The exponent table shows that all elements {3, 4, 5, 9} are the generators in G5.

Notice also that for all γ{3, 4, 5, 9} their exponents 0 and 5 yields the same result, i.e.

γ0 = γ5 = 1 mod 11.

This means that exponents of generators γ are computed mod 5.

This property makes the usage of modular groups of prime order q valuable in cryptography since they
provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group Zp
* defined by the prime (not necessarily strong prime) number

p the subgroup of prime order Gq in Zp
* is used.

In this case if p is strong prime, then generator γ in Gq can be found by random search satisfying the
following conditions

γq = 1 mod p and γ2 ≠ 1 mod p.

 111_004 DEF Page 4

γq = 1 mod p and γ2 ≠ 1 mod p.

Analogously in this generalized case this means that exponents of generators γ are computed mod q. In our
modeling we will use group Zp

* instead of Gq for simplicity.

Discrete Exponent Function (12/14)

Let as above p=11 and is strong prime and generator we choose g = 7 from the set ={2, 6, 7, 8}.

Public Parameters are PP=(11,7), Then DEFg(x) = DEF7(x) is defined in the following way:

DEF7(x) = 7x mod 11 = a;

DEF7(x) provides the following 1-to-1 mapping, displayed in the table below.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7x mod p = a 1 7 5 2 3 10 4 6 9 8 1 7 5 2 3

The illustration why 7x mod p values are repeating when x = 10, 11, 12, 13, 14, etc. is presented in
computations below:
10 mod 10 = 0; 710 = 70 = 1 mod 11 = 1.
11 mod 10 = 1; 711 = 71 = 7 mod 11 = 7.
12 mod 10 = 2; 712 = 72 = 49 mod 11 = 5.
13 mod 10 = 3; 713 = 73 = 343 mod 11 = 2.
14 mod 10 = 4; 714 = 74 = 2401 mod 11 = 3.
etc.

You can see that a values are repeating when x = 10, 11, 12, 13, 14, etc. since exponents are reduced mod
10 due to Fermat little theorem.

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of DEF7(x) we perform the following step-by-step computations.

70 = 1 mod 11 0 1

71 = 7 mod 11 1 2

72 = 5 mod 11 2 3

73 = 2 mod 11 3 4

74 = 3 mod 11 4 5

75 = 10 mod 11 5 6

76 = 4 mod 11 6 7

77 = 6 mod 11 7 8

78 = 9 mod 11 8 9

79 = 8 mod 11 9 10

xZ10 aZ11
*

It is seen that one value of x is mapped to one value of a.

Discrete Exponent Function (14/14)

But the most in interesting think is that DEF is behaving like a pseudorandom function.

It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of DEF we compare the graph of "regular" sine
function with "pseudorandom" DEF using Octave software.

>> p128sin
>> p128def
p = 127;

 111_004 DEF Page 5

function with "pseudorandom" DEF using Octave software.

>> p128sin
xrange = 16 * pi;
step = xrange/128;
x = 0:step:xrange;
y = sin(x);
comet(x, y)

>> p128def
p = 127;
g = 23;
x = 0:p-1;
a = mod_expv(g, x, p);
comet(x, a)

Example 1: Let for given integers u, x and h in Zp-1 we compute exponent s of generator g by the expression

Then
s = u + xh.

gs mod p = gs mod (p-1) mod p.

Therefore, s can be computed mod (p-1) in advance, to save a multiplication operations, i.e.

s = u + xh mod (p-1).

>> p=genstrongprime(28)
p = 242502683
>> q=(p-1)/2
q = 121251341
>> g=2
g = 2
>> mod_exp(g,q,p)
ans = 242502682
>> x=randi(p-1)
x = 4.8906e+07
>> x=int64(randi(p-1))
x = 165532552

>> u=int64(randi(p-1))
u = 74661797
>> h=int64(randi(p-1))
h = 194373549
>> xh=mod(x*h,p-1)
xh = 218184446
>> upxh=mod(u+xh,p-1)
upxh = 50343561
>> s=upxh
s = 50343561

>> snr=int64(u+x*h)
snr = 32175149681928845
>> mod(snr,p-1)
ans = 50343561

Example 2: Exponent s computation including subtraction by xr mod (p-1) and division by i in Zp-1 when
gcd(i, p-1) = 1.

Firstly d = xr mod (p-1) is computed:

Secondly -d = -xr mod (p-1) = (p-1-d) is found.

Thirdly i-1 mod (p-1) is found.

And finally exponent s = (h + (p-1-d))i-1 mod (p-1) is computed.

s = (h - xr)i-1 mod (p-1).

>> r=int64(randi(p-1))
r = 212560238
>> i=int64(randi(p-1))

>> i_m1=mulinv(i,p-1)
i_m1 = 196196855
>> gcd(i,i_m1)

 111_004 DEF Page 6

Firstly d = xr mod (p-1) is computed:

Secondly -d = -xr mod (p-1) = (p-1-d) is found.

Thirdly i-1 mod (p-1) is found.

And finally exponent s = (h + (p-1-d))i-1 mod (p-1) is computed.

s = (h - xr)i-1 mod (p-1).

>> r=int64(randi(p-1))
r = 212560238
>> i=int64(randi(p-1))
i = 64538497
>> xr=mod(x*r,p-1)
xr = 98263592
>> mxr=mod(-xr,p-1)
mxr = 144239090
>> xrpmr=mod(xr+mxr,p-1)
xrpmr = 0
>> hpmxr=mod(h+mxr,p-1)
hpmxr = 96109957

>> i_m1=mulinv(i,p-1)
i_m1 = 196196855
>> gcd(i,i_m1)
ans = 1
>> mod(i*i_m1,p-1)
ans = 1
>> s=mod(hpmxr*i_m1,p-1)
s = 131208547

 111_004 DEF Page 7

