Discrete Exponent Function - DEF (1/14)

The Discrete Exponent Function (**DEF**) used in cryptography firstly was introduced in the cyclic multiplicative group $Z_{p^*} = \{1, 2, 3, ..., p-1\}$, with binary multiplication operation * **mod** *p*, where *p* is prime number. Further the generalizations were made especially in *Elliptic Curve Groups* laying a foundation of *Elliptic Curve CryptoSystems* (ECCS) in general and in *Elliptic Curve Digital Signature Algorithm* (ECDSA) in particular.

Let g be a generator of \mathbb{Z}_p^* then **DEF** is defined in the following way:

$\operatorname{DEF}_{g}(\mathbf{x}) = \mathbf{g}^{\mathbf{x}} \operatorname{mod} \mathbf{p} = \mathbf{a};$

DEF argument *x* is associated with the private key – PrK (or other secret parameters) and therefore we will label it in red and value *a* is associated with public key – PuK (or other secret parameters) and therefore we will label it in green.

In order to ensure the security of cryptographic protocols, a large prime number p is chosen. This prime number has a length of 2048 bits, which means it is represented in decimal as being on the order of 2^{2048} , or approximately $p \sim 2^{2048}$.

In our modeling with Octave, we will use p of length having only 28 bits for convenience. We will deal also with a strong prime numbers.

T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas, at al.]

Discrete Exponent Function (2/14)

<u>*Definition*</u>. Binary operation * mod p in Z_p^* is an arithmetic multiplication of two integers called operands and taking the result as a residue by dividing by p.

For example, let p = 11, then $Z_p^* = \{1, 2, 3, ..., 10\}$, then $5 * 8 \mod 11 = 40 \mod 11 = 7$, where $7 \in Z_p^*$.

In our example the residue of 40 by dividing by 11 is equal to 7, i.e., 40 = 3 * 11 + 7. Then 40 **mod** 11 = (33 + 7) **mod** 11 = (33 mod 11 + 7 mod 11) **mod** 11 = (0 + 7) **mod** 11 = 7. Notice that 33 **mod** 11 = 0 and 7 **mod** 11 = 7.

<u>*Definition*</u>: The integer g is a generator in \mathbb{Z}_p^* if powering it by integer exponent values x all obtained numbers that are computed **mod** p generates all elements in in \mathbb{Z}_p^* .

So, it is needed to have at least p-1 exponents x to generate all p-1 elements of \mathbb{Z}_p^* . You will see that exactly p-1 exponents x is enough.

Discrete Exponent Function (3/14)

Let Γ be the set of generators in \mathbb{Z}_p^* . How to find a generator in \mathbb{Z}_p^* ?

In general, it is a hard problem, but using strong prime p and Lagrange theorem in group theory the generator in \mathbb{Z}_p^* can be found by random search satisfying two following conditions if p is strongprime.

For all $g \in \Gamma$

$$g^q \neq 1 \mod p$$
; and $g^2 \neq 1 \mod p$.

<u>Fermat little theorem</u>: If *p* is prime then for all integers *i*:

$i^{p-1} = 1 \mod p$.

<u>Corollaries</u>: 1. The exponent *p*-1 is equivalent to the exponent 0, since $i^0 = i^{p-1} = 1 \mod p$.

2. Any exponent e can be reduced **mod** (p-1), i.e.

$i^e \mod p = i^{e \mod (p-1)} \mod p$.

3. All non-equivalent exponents \mathbf{x} are in the set $\mathbf{Z}_{p-1} = \{0, 1, 2, \dots, p-2\}; +, -, * \mod (p-1)$ and $\mathbf{I} \mod (p-1)$ with exception.

4. Sets Z_{p-1} and Z_p^* have the same number of elements.

Discrete Exponent Function (4/14)

In \mathbb{Z}_{p-1} addition +, multiplication * and subtraction - operations are realized **mod** (*p*-1).

Subtraction operation (*h*-*d*) mod (*p*-1) is replaced by the following addition operation ($h + (-d) \mod (p-1)$).

Therefore, it is needed to find $-d \mod (p-1)$ such that $d + (-d) = 0 \mod (p-1)$, then assume that

$$-d \mod (p-1) = (p-1-d)$$

Indeed, according to the distributivity property of modular operation

$$(d + (-d)) \mod (p-1) = (d + (p-1-d) \mod (p-1)) = (p-1) \mod (p-1) = 0.$$

Then

$$(h-d) \mod (p-1) = (h + (p-1-d)) \mod (p-1)$$

Discrete Exponent Function (5/14)

<u>Statement</u>: If greatest common divider between p-1 and i is equal to 1, i.e., gcd(p-1, i) = 1, then there exists unique inverse element $i^{-1} \mod (p-1)$ such that $i * i^{-1} \mod (p-1) = 1$. This element can be found by *Extended Euclide algorithm* or using *Fermat little theorem*. We do not fall into details how to find $i^{-1} \mod (p-1)$ since we will use the ready-made computer code instead in our modeling.

Division operation / mod (p-1) of any element in Z_{p-1} by some element i is replaced by multiplication * operation with $i^{-1} \mod (p-1)$ if gcd(i, p-1) = 1 according to the *Statement* above.

To compute $u|i \mod (p-1)$ it is replaced by the following relation $u * i^{-1} \mod (p-1)$ since

$$u / i \mod (p-1) = u * i^{-1} \mod (p-1).$$

Discrete Exponent Function (6/14)

Example 1: Let for given integers u, x and h in Z_{p-1} we compute exponent s of generator g by the expression

Then

$$s = u + xh$$
.

$$g^s \mod p = g^{s \mod (p-1)} \mod p$$
.

Therefore, s can be computed **mod** (p-1) in advance, to save a multiplication operations, i.e.

 $s = \boldsymbol{u} + \boldsymbol{x}\boldsymbol{h} \mod (\boldsymbol{p}-1).$

Example 2: Exponent *s* computation including subtraction by *xr* mod (*p*-1) and division by *i* in Z_{p-1} when gcd(i, p-1) = 1. $s = (h - xr)i^{-1} mod (p-1)$.

Firstly $d = xr \mod (p-1)$ is computed: Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found. Thirdly $i^{-1} \mod (p-1)$ is found. And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.

Discrete Exponent Function (7/14)

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be proved.

<u>Theorem</u>. If g is a generator in \mathbb{Z}_p^* then **DEF** provides the following 1-to-1 mapping

DEF:
$$Z_{p-1} \rightarrow Z_p^*$$
.

Parameters *p* and *g* for **DEF** definition we name as Public Parameters and denote by $\mathbf{PP} = (p, g)$.

Example: Strong prime p = 11, p = 2 * 5 + 1, then q = 5 and q is prime. Then p-1 = 10. $Z_{11}^* = \{1, 2, 3, ..., 10\}$ $Z_{10} = \{0, 1, 2, ..., 9\}$

Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named *Cayley table* including multiplication table, addition table etc.

Multiplicatio	Z11*										
											Values of inverse elements in Z ₁₁
*	1	2	3	4	5	6	7	8	9	10	
1	1	2	3	4	5	6	7	8	9	10	$1^{-1} = 1 \mod 11$
2	2	4	6	8	10	1	3	5	7	9	$2^{-1} = 6 \mod 11$
3	3	6	9	1	4	7	10	2	5	8	$3^{-1} = 4 \mod 11$
4	4	8	1	5	9	2	6	10	3	7	$4^{-1}=3 \mod 11$
5	5	10	4	9	3	8	2	7	1	6	$5^{-1} = 9 \mod 11$
6	6	1	7	2	8	3	9	4	10	5	$6^{-1} = 2 \mod 11$
7	7	3	10	6	2	9	5	1	8	4	$7^{-1} = 8 \mod 11$
8	8	5	2	10	7	4	1	9	6	3	$8^{-1} = 7 \mod 11$
9	9	7	5	3	1	10	8	6	4	2	$9^{-1}=5 \mod 11$
10	10	9	8	7	6	5	4	3	2	1	$10^{-1} = 10 \mod 11$

Multiplication table of multiplicative group Z_{11}^* is represented below.

Discrete Exponent Function (9/14)

The table of exponent values for p = 11 in Z_{11}^* computed **mod** 11 and is presented in table below. Notice that according to Fermat little theorem for all $z \in Z_{11}^*$, $z^{p-1} = z^{10} = z^0 = 1 \mod 11$.

Exponent tab. mod	Z ₁₁ *										
^	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	5	10	9	7	3	6	1
3	1	3	9	5	4	1	3	9	5	4	1
4	1	4	5	9	3	1	4	5	9	3	1
5	1	5	3	4	9	1	5	3	4	9	1
6	1	6	3	7	9	10	5	8	4	2	1
7	1	7	5	2	3	10	4	6	9	8	1
8	1	8	9	6	4	10	3	2	5	7	1
9	1	9	4	3	5	1	9	4	3	5	1
10	1	10	1	10	1	10	1	10	1	10	1

Discrete Exponent Function (10/14)

Notice that there are elements satisfying the following different relations, for example:

 $3^5 = 1 \mod 11$ and $3^2 \neq 1 \mod 11$.

The set of such elements forms a subgroup of prime order q = 5 if we add to these elements the *neutral* group element 1.

This subgroup has a great importance in cryptography we denote by

$$G_5 = \{1, 3, 4, 5, 9\}.$$

The multiplication table of G_5 elements extracted from multiplication table of Z_{11}^* is presented below.

Multiplication tab. mod 11	G5						Values of inverse	Exponent tab. mod 11	G5					
*	1		3 4	4	5	9	elements in 05	^	0	1	2	3	4	5
1	1		3 4	4	5	9	$1^{-1} = 1 \mod 11$	1	1	1	1	1	1	1
3	3	Ģ)	1	4	5	$3^{-1} = 4 \mod 11$	3	1	3	9	5	4	1
4	4	1		5	9	3	$4^{-1}=3 \mod 11$	4	1	4	5	9	3	1
5	5	4	<u>ب</u>	9	3	1	$5^{-1} = 9 \mod 11$	5	1	5	3	4	9	1
9	9	4	5	3	1	4	$9^{-1} = 5 \mod 11$	9	1	9	4	3	5	1

Discrete Exponent Function (11/14)

Notice that since G_5 is a subgroup of Z_{11}^* the multiplication operations in it are performed **mod** 11. The exponent table shows that all elements $\{3, 4, 5, 9\}$ are the generators in G_5 . Notice also that for all $\gamma \in \{3, 4, 5, 9\}$ their exponents 0 and 5 yields the same result, i.e.

$$\gamma^{0} = \gamma^{5} = 1 \mod{11}$$

This means that exponents of generators γ are computed **mod** 5.

This property makes the usage of modular groups of prime order q valuable in cryptography since they provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group Z_p^* defined by the prime (not necessarily strong prime) number p the subgroup of prime order G_q in Z_p^* is used.

In this case if p is strong prime, then generator γ in G_q can be found by random search satisfying the following conditions

$\gamma^q = 1 \mod p$ and $\gamma^2 \neq 1 \mod p$.

Analogously in this generalized case this means that exponents of generators γ are computed **mod** q. In our modeling we will use group \mathbb{Z}_p^* instead of G_q for simplicity.

Discrete Exponent Function (12/14)

Let as above p=11 and is strong prime and generator we choose g = 7 from the set $\Gamma = \{2, 6, 7, 8\}$. Public Parameters are **PP**=(**11**,**7**), Then **DEF**_g(x) = **DEF**₇(x) is defined in the following way:

$$DEF_7(x) = 7^x \mod 11 = a$$

DEF₇(\mathbf{x}) provides the following 1-to-1 mapping, displayed in the table below.

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$7^x \mod p = a$	1	7	5	2	3	10	4	6	9	8	1	7	5	2	3

You can see that *a* values are repeating when x = 10, 11, 12, 13, 14, etc. since exponents are reduced **mod** 10 due to *Fermat little theorem*.

The illustration why $7^x \mod p$ values are repeating when x = 10, 11, 12, 13, 14, etc. is presented in computations below:

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of **DEF**₇(\mathbf{x}) we perform the following step-by-step computations.

	<u>x</u> ∈2	Z ₁₀	$a \in \mathbb{Z}_{11}$
$7^0 = 1 \mod 11$	0	\rightarrow	1
$7^1 = 7 \mod 11$	1		2
$7^2 = 5 \mod 11$	2		3
$7^3 = 2 \mod 11$	3	\mathbf{X}	4
$7^4 = 3 \mod 11$	4	\times	5
$7^5 = 10 \mod 11$	5		6
$7^6 = 4 \mod 11$	6		7
$7^7 = 6 \mod 11$	7		8
$7^8 = 9 \mod 11$	8		9
$7^9 = 8 \mod 11$	9		10

It is seen that one value of x is mapped to one value of a.

Discrete Exponent Function (14/14)

But the most in interesting think is that **DEF** is behaving like a *pseudorandom function*.

It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of **DEF** we compare the graph of "regular" **sine** function with "pseudorandom" **DEF** using Octave software.

>>	p128def
	407

>> p128sin

function with "pseudorandom" DEF using Octave software.

Then

 $s = \boldsymbol{u} + \boldsymbol{x}\boldsymbol{h}.$

$$g^s \mod p = g^{s \mod (p-1)} \mod p.$$

Therefore, s can be computed **mod** (p-1) in advance, to save a multiplication operations, i.e.

 $s = \mathbf{u} + \mathbf{x}h \mod (\mathbf{p}-1).$

<u>Example 2</u>: Exponent s computation including subtraction by $xr \mod (p-1)$ and division by i in \mathbb{Z}_{p-1} when gcd(i, p-1) = 1. $s = (h - xr)i^{-1} \mod (p-1)$.

Firstly $d = xr \mod (p-1)$ is computed: Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found. Thirdly $i^{-1} \mod (p-1)$ is found.

And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.

>> r=int64(randi(p-1))	>> i_m1=mulinv(i,p-1)
r = 212560238	i_m1 = 196196855

>> r=int64(randi(p-1)) >> i_m1=mulinv(i,p-1) r = 212560238 i_m1 = 196196855 >> i=int64(randi(p-1)) >> gcd(i,i_m1) i = 64538497 ans = 1 >> xr=mod(x*r,p-1) >> mod(i*i_m1,p-1) xr = 98263592 ans = 1 >> mxr=mod(-xr,p-1) >> s=mod(hpmxr*i_m1,p-1) mxr = 144239090 s = 131208547 >> xrpmr=mod(xr+mxr,p-1) xrpmr = 0 >> hpmxr=mod(h+mxr,p-1) hpmxr = 96109957

$$s = (h - xr)i^{-1} \operatorname{mod} (p-1).$$

g 5 mod p = ...

Firstly $d = xr \mod (p-1)$ is computed: Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found. Thirdly $i^{-1} \mod (p-1)$ is found. And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.